If it's not what You are looking for type in the equation solver your own equation and let us solve it.
-3t^2+6t+4=0
a = -3; b = 6; c = +4;
Δ = b2-4ac
Δ = 62-4·(-3)·4
Δ = 84
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{84}=\sqrt{4*21}=\sqrt{4}*\sqrt{21}=2\sqrt{21}$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(6)-2\sqrt{21}}{2*-3}=\frac{-6-2\sqrt{21}}{-6} $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(6)+2\sqrt{21}}{2*-3}=\frac{-6+2\sqrt{21}}{-6} $
| 2=4x+5, | | 12x/16=20 | | 12x–20=16 | | 12x–16=20–16 | | )12x=20+16 | | 6x(5x12)=(6x5)x12=240 | | 7x−70=6x−30 | | 5^2x+5^x+1=6 | | 6m+7/3m+2=5/4 | | 12x-16=20-16 | | 12x=20+16 | | e(4 | | -8x-24=6x-6 | | 7.4+x=3.1 | | 2g+4=7 | | X-x(0.25)=50 | | 4/3=5/12+7x/9 | | 16^(-5x)=5^(x+6) | | 7^x=700 | | -x(2+4)=18 | | 9x-1=6x-10 | | -7(x+6)=25 | | x/4=45/3 | | 4/9=x+4/2x+13 | | 2/3(5x-2)-(4x-1-3x/2=5x-11/2 | | 411/x=0.02 | | (X+1)(4x-8)=7 | | 5n^2+22n=20 | | 2^4÷2^x=128 | | 4^-2=4^12x-9 | | 5j^2-134=162 | | 18.6*x=54 |